Nogo Receptor Inhibition Enhances Functional Recovery following Lysolecithin-Induced Demyelination in Mouse Optic Chiasm
نویسندگان
چکیده
BACKGROUND Inhibitory factors have been implicated in the failure of remyelination in demyelinating diseases. Myelin associated inhibitors act through a common receptor called Nogo receptor (NgR) that plays critical inhibitory roles in CNS plasticity. Here we investigated the effects of abrogating NgR inhibition in a non-immune model of focal demyelination in adult mouse optic chiasm. METHODOLOGY/PRINCIPAL FINDINGS A focal area of demyelination was induced in adult mouse optic chiasm by microinjection of lysolecithin. To knock down NgR levels, siRNAs against NgR were intracerebroventricularly administered via a permanent cannula over 14 days, Functional changes were monitored by electrophysiological recording of latency of visual evoked potentials (VEPs). Histological analysis was carried out 3, 7 and 14 days post demyelination lesion. To assess the effect of NgR inhibition on precursor cell repopulation, BrdU was administered to the animals prior to the demyelination induction. Inhibition of NgR significantly restored VEPs responses following optic chiasm demyelination. These findings were confirmed histologically by myelin specific staining. siNgR application resulted in a smaller lesion size compared to control. NgR inhibition significantly increased the numbers of BrdU+/Olig2+ progenitor cells in the lesioned area and in the neurogenic zone of the third ventricle. These progenitor cells (Olig2+ or GFAP+) migrated away from this area as a function of time. CONCLUSIONS/SIGNIFICANCE Our results show that inhibition of NgR facilitate myelin repair in the demyelinated chiasm, with enhanced recruitment of proliferating cells to the lesion site. Thus, antagonizing NgR function could have therapeutic potential for demyelinating disorders such as Multiple Sclerosis.
منابع مشابه
Nogo receptor blockade enhances subventricular zone’s stem cells proliferation and differentiation in demyelination context
Introduction: Nogo-A and Nogo receptor (NgR) are expressed in the subventricular zone (SVZ) stem cells. NgR plays critical inhibitory roles in axonal regeneration and remyelination. However, the role of NgR in SVZ niche behaviors in demyelination context is still uncertain. Here we investigated the effects of NgR inhibition on SVZ niche reaction in a local model of demyelination in adult mouse ...
متن کاملP72: Hesperetine Nanoparticles Ameliorate Glial Activation and Reduce Demyelination Llevel of Rat Optic Chiasm in Lysolecithin-Iinduced Demyelination Model
Multiple sclerosis (MS) is one of the most autoimmune neurological and inflammatory disease in worldwide. Demyelination and disturbance of action potential conductance are regarded as main signs of MS disease. Hesperetin (Hst) is one of the flavonoid that have neuroprotective properties. The present study attempts to evaluate the effects of hesperetin or its nanoparticle on myelin repair and gl...
متن کاملElectrophysiological and Histological Study of Lysolecithin-Induced Local Demyelination in Adult Mice Optic Chiasm
Introduction: Demyelination is one of the main causes of neurological disability. It is the end product of numerous pathological processes, multiple sclerosis (MS) being the most common cause. More than 70% of the MS patients suffer from optic disturbances. This disease commonly affects the optic pathway, particularly the optic nerves and chiasm. Several attempts have been made to produce a ...
متن کاملبررسی مولکولی اثر پروژسترون بر کیاسمای بینایی موش صحرایی نر پس از القای دمیلیناسیون با اتیدیوم بروماید
Background and purpose: Optic neuritis is one of the appearances of Multiple Sclerosis (MS). Progesterone has a protective effect in central nervous system, so, in this study we aimed at investigating the effect of progesterone on myelin repair of the optic chiasm in male rats by studying the genes expression of Olig 2 (marker of oligodendrocyte precursor cells), GFAP (marker of astrocyte...
متن کاملHuman Induced Pluripotent Stem Cells Differentiation into Oligodendrocyte Progenitors and Transplantation in a Rat Model of Optic Chiasm Demyelination
BACKGROUND This study aims to differentiate human induced pluripotent stem cells (hiPSCs) into oligodendrocyte precursors and assess their recovery potential in a demyelinated optic chiasm model in rats. METHODOLOGY/PRINCIPAL FINDINGS We generated a cell population of oligodendrocyte progenitors from hiPSCs by using embryoid body formation in a defined medium supplemented with a combination o...
متن کامل